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The requirements on SDIO imaging problems, although somewhat severe, can generally
be accomplished by using very large optics. Unfortunately the expense associated with
constructing, testing and deployment is generally prohibitive (as I can attest having served on the
committee investigating the Hubble Space Telescope failure) and other, less expensive
approaches, are desirable.

The main theme of this contract is the development of unconventional imaging
techniques. The various unconventional imaging methods édvocated result in complicated
nonlinear relations between the object and its image, inversion techniques are required to
translate the measured data into a meaningful object. Although these methods require a large
amount of computation, they are relatively cheap compared to the costs of large telescopes which |
rely upon physical size for increased resolution.

The technical approach is two-fold: first, development of the theory of the
unconventional imaging scenario in question; second, adapt the latest techniques from numerical
analysis to carry out the inversion from measured data to reconstructed object. Any inversion
technique adopted must be robust with respect to measurement noise.

The contract was originally for two years, but only one year was actually funded. Asa
consequence only one of the three research projects was completely finished. This work has
been written up for publication under the title "Inversion of the Modulus/Phase of a Coherently
[lluminated Object from its Measured Diffraction Image". A copy of the manuscript is included
in this section. Aside from its general significance, these techniques developed in this paper are
of direct use in optical microscopy and can be further developed so as to supplement the well
known technique of phase contrast microscopy. The inversion algorithm developed here can also

be used for lens testing and could, with some further work, replace the cumbersome knife edge
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test for wavefront aberrations.




Forward

Table of Contents

Main Body of Report: Inversion of the moudulus and phase
of a coherently illuminated object from its measured
diffraction image.

References

Figures with Figure Legends

Report of Inventions




FIGURE LEGENDS

Fig. 1 Distribution of illuminente in the diffraction image of a coherently illuminated opaque
edge: o(v) = 0, v < 0 and o(v) = 1 for v > 0 viewed through an annular aperture
of obscuration radius ¢ = 0.05. The sclid line is for the in-focus situation, the dotted

line is for a half-wave of defocus. Taken from Reference 5.

-

Fxg 2 Sample realization of reconstruction of modulus and phase of coherently illuminated

object (dashed lines) in the presence of 2% measurement “noise”.

Fig. 3 Sample realization of reconstruction of modulus of coherently illuminated object

(dashed line) in the presence of 4% measurement “noise”.

Fig. 4 Sample realization of reconstruction of modulus of coherently illuminated object

(dashed line) in the presence of 4% measurement “noise”.
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Inversion of the Modulus/Phase of a Coherently llluminated
Object from its Measured Diffraction Image




ABSTRACT
An algorithm for recovering the modulus and phase of a coherently illuminated object
from its measured diffraction image is presented. The algorithm is based upon the fact
that both the Jacobian and Hessian matrices can be evaluated exactly so that both slope
and curvature information is available. The inversion problem is cast as a nonlinear uncon-

strained optimization problem, and trust region techniques are employed for its solution.

Representative numericals are presented.




1. INTRODUCTION

The problem of measuring the diffraction image of an incoherently illuminated object
and working back to determine (or estimate) the object itself has been of great interest
in many scientific and technical areas for the past twenty years starting with the work of
Barakat and Blackman [1] who employed Tichonov regularization methods. The subject
of object restoration for incoherently illuminated objects has grown to such an extent that
even listing the books and major review articles is a te&ous undertaking; however, we
should refer to the standard work of Andrews and Hunt [2] which has served to educate

so many people interested in the topic.

At the other extreme, we have the analogous problem for a coherently illuminated
object, a much more difficult problem because the relation between object and diffraction
image is nonlinear, whereas the corresponding relation for incoherently illuminated objects
is linear. In many respects the coherently illuminated situation is much older than the
incoherently illuminated situation in that light microscopists have always encountered
such problems. Their “solutiogs” have generally been of the old-fashioned expert systems
type; they have encountered over the years a variety of biological objects and developed
an empirical expertise in sorting out situations. In a sense their primary artifact is the
diffraction image, not the actual object, as witness the various phase coﬁtrast methods
[3,4]. Unlike the incoherent situation, there is no guarantee that the topology of the object
bears any resemblance to its coherent diffraction image. As an example see Figure 1 which
shows the diffraction image of an edge viewed through an optical system with an annular

aperture [5].

In the present paper a solution for the modulus and phase of a coherently illuminated
object is obtained via a nonlinear regularized minimization. We have brought to bear
powerful tools recently _developed in numerical analysis (particularly trust region consid-

erations) toward the efficient solution of the inversion problem. Even with a CRAY, the
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illustrative calculations at the end of the paper required running times of up to several

minutes.

The present scheme takes advantage of the fact that we can evaluate both Jacobian
and Hessian matrices ezactly, thereby allowing us to make use of slope and curvature
information explicitly. There is no need to make the usual small residual approximation
of the Hessian with its convergence limitation in the presence of measurement noise. A
second benefit of knowing the Jacobian and Hessian explicitly is that we can make very

efficient use of the trust region tests in determining the path to local minima.

There are a number of algorithms for the inversion of modulus/phase of coherently
illuminated objects already published; see Stark [6] for an extremely useful summary.
Practically all these algorithms will yield 2 reasonably accurate estimate of the‘support
of the object, and the present algorithm is no exception. However, many coherently illu-
minated objects contain changes in modular/phase over the surface so that an algorithm
(such as the one discussed here) which also can deliver information on the distribution of
modulus/phase over the object is extremely useful for applications (e.g., biological light

microscopy)-




2. DIFFRACTION MODEL

The diffraction image of a coherently illuminated object, I (z,y) in the image receiving

plane with coordinates z,y is measured over a square lattice of points Zm, Yn:

“;"":g"‘ m,n=0,%1,£2,...,+M (2.1)

where (8 is a numerical constant. It is assumed that M is large enough for
zmpymy) =0 (2.2)

In what follows, it will be convenient to write (ZmyYm) = hma as a column vector Iof

length M = (2M + 1)? using standard Fortran lexiographic ordering.

We assume that the measured diffraction image can be modelled via scalar optical

diffraction theory so that the model diffraction image, I(z,y), is given by the convolution

2

I(z,y) = // a(z — 2,y —y')o(z',y') dz'dy’ B (2.3)

object

assuming the isoplanatic condition to hold.
$

The coherently illuminated object is characterized by a complex-valued function
o(z,y) with modulus lo(z,y)| and phase arctan(oi(z, y)/on(z,y)]. The function a(z,y)

is the coherent point-spread function of the optical system performing the imaging; to

L ~ within multiplicative factors it is

a(z,y) = // A(C,n)ei%(’ﬁ'”")d(dn (2.4) _
exit pupil
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with k as the mean wavenumber of the coherent light and f the focal length. The pupil
function A((,n) is given by

A(¢,m) = B(¢,n)e*em | (2.5)

with W(¢,n) the wavefront aberration function over the exit pupil and B((,7) the ampli-

tude distribution over the exit pupil; both are assumed known in the present scenario.

For the very important case of a circular aperture exit pupil of radius a for which

B(¢,n) =1 and W(¢,n) =0, we have

27, [£2(22 +42)1/?]

a(z,y) = - (2.6)
[7(32 + y2)1/2]
Since in most applications, the exit pupil is circular; under these circumstarces it is

convenient to employ normalized coordinates:

Tf =7
¢ 1 27)
p= Z 1 q= =
" Consequently Egs. (2.3), (2.4), and (2.6) become
| R
T(u,v) = / / a(u-u',;:)—v')o(u',v') du'dv'| (2.3a)
object
a(u,v) ="' / / A, e dpdg P E T (2.4a)
0gpi+e2<l IR B
27 2 + 2\1/2
a(u,v) = (v + o) ) (2.6a)

(u? +v2)i/2
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Leaving aside the mathematical details for the moment, let us consider the task before
us. We are given measured values of the diffracted intensity and are requizled to determine
the modulus and phase of the object assuming that the measured diffracted intensity
can be modeled as the convolution, Eq. (2.3), and that we know the parameters of the
optical system characterizing the coherent point spread function, Eq. (2.4). Said object
is contained in the integrand of a double integral whi;:h is itself squared. When viewed
from this perspective, we should not be unduly optimi_stic about achieving an accurate
solution because of the inherent nonlinearity and strong smoothing action of the double
integral. Irrespective of the actual inversion method, the strong smoothing action of the
integration means that much high frequency data is lost and cannot be retrieved, even in
principle. Only a low frequency version of the object can be obtained. Perhaps the best
way to consider the problem is to interpret it thusly: we are given the “answer” (= effect)
in the form of a noisy diffraction image of the object and are attempting to determine
the “question” (= cause), the coherently illuminated object. The mathematical relation
between answer and question is highly nonlinear by virtue of Eq. (2.2), bearing in mind

that a(u,v) is additionally an oscillating, complex-valued function.

In a sense this problem can be considered as a two-dimensional phase retrieval problem,
see [7-13] for various details. We will not discuss the general issues of ill-posed inverse

problems and refer the reader to {14,15] for some of the theoretical aspects.

Our diffraction model image Z(u,v) is to be determined by the values of the '&age
at the lattice points (u},vy) inside a square in'. the (u',v') plane that is large enough to
contain the image. The number of obje;:t values, o(vh,v}) = ok is taken to be N. It is
importa.nt.to remember that both modulus and phase must be determined at each of these-
lattice points. Let 7 be the number of unknown modulus and phase values (obviously 7

must be even); the unknown o are to be written: as a column vector o.
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In this notation Eq. (2.3a) becomes I(o) where I is a vector of length m. The
inversion problem relates the unknown (complex-valued) object values o of the assumed

diffraction model to the measured diffraction image I via the nonlinear relation
I1=ZI(0) . (2.7)

This equation is to be interpreted as a system of 7 nonlinear equations in 7 unknowns.
Enough data must be given to allow some smoothing of the measured diffraction image
data as regards the diffraction model;y consequently we let m > i so that the nonlinear
system is overdetermined. The problem now reduces to the solution of Eq. (2.7) in some

normed sense.

It is of some interest to contrast the differences between the incoherently illuminated
and coherently illuminated object situations. The relation between object and image for

incoherently illuminated objects, a.ga.iﬁ assuming that the isoplanatic conditions holds, is

Ii(z,y) = // t(z -2,y —y)oi(z',y") dz'dy’ (2.8)

object

where

0i(z,y) = intensity distribution over the

incoherently radiating object
t(z,y) x |a(z,y)|* = incoherent point-spread function

Ii(z,y) = intensity distribution over the diffraction

image of oi(z,¥)

0%




Two points to note: (1) all functions in Eq. (2.8) are real and nonnegative, (2) the relation
between answer, I;(z,y), and que;tion, 0i(z,y), is linear. On the other hand, for the coher-
ently illuminated object only the diffracted intensity is real and nonnegative. Furthermore
the relation between I(z,y) and o(z,y) is nonlinear. Consequently the incoherently illu-

minated object scenario is much easier to invert than the coherently illuminated object

scenario.




3. PRELIMINARIES

In order to proceed, we next discretize the double integral on the right-hand side of

Eq. (2.3a)

) N N 2
T(tum,Vm) = Imn = |C Z Z ok 0ga(tm — Uk, Un — V2)0(VE, V2) (3.1)
k=1 {=1

Here u, v¢ are the quadrature points and a,ay are the corresponding weight factors.

In the numerical algorithm we employ for the inversion (see next section), we require
the first and sécond derivatives of Tmn With respect to ok in order to form Jacobian
and Hessian matrices. We need not write out the explicit formulas because we employed
a syrhbol manipulation program to evaluate them directly in the computer from which

pumerical values are obtained internally.




4. OUTLINE OF SOLUTION APPROACH

We now outline the general features of our numerical approach to the nonlinear phase
retrieval problem via regularized unconstrained minimization. Qur version of the uncon-
strained minimization problem is that of finding the least value of an objective function,
e(0). The term unconstrained indicates that the variables o are not limited in any way. In

our application, we wish to determine a global minimum of ¢, i.e., a point o* satisfying
(o) > €(a*), Yo . ' (4.1)
Unfortunately we must be content with a local minimum:
(o) > ¢(0*) Vo, in a neighborhood of 0™ . ' V('4.2)

Solution of the global minimum problem is far harder than the solution of the local mini-

mum problem which itself is extremely complicated [16,17].

The derivation of nearly all methods for uncop.stra.ined minimization is founded on the
assumption that the objective function ¢(0) can be approximated by a quz-;dra.tic function
in the neighborhood of a minimum point. Thus methods are sought which efficiently
minimize quadratic functions in the hope that they will also be effective on more general
functions, at least in the neighborhood of a minimum. When first and second derivatives of
¢(0) are known, such as in our case, then we can make use of both gradient and curvature
information to effect a solution. Furthermore, both gradient and curvature, as governed
by G and ﬁ, see Eqs. (4.4) and (4.5), can be calculated ezactly in the context of the
discretized version of our problem. Thus, we can avoid many of the difficulties associated
with situations where G and H are known only approximately. The Taylor series expansion

of the objective function can be used to approximate its minimum value from points o near

to the minimum o* by moving in a direction Ao

«(0 + Ao) ~ (o) + GT(0)(A0) + %(AO)TH(O)(AO) (4.3)

l e




G and H are the gradient vector and Hessian matrix of the objective function, respectively

Je Oe Oe
T i t— —— PRy —
G - 601 ’ 302 ’ ’ aO,', (4.4)
e &
dos o180
H= : : (4.5)
d%e - B
Jozdor T Q0%

Note that H is symmetric. Both G and H are exact within the context of the discretization.
The strategy is to determine the vector Ao of the movements required to approximate the

minimum from the current point o.

Before proceeding further, it is important to state the conditions for a given point o to
be an unconstrained strong minimum o* (i.e., a point o* for which the objective function

increases locally in all directions. The first order necessary condition is [16,17]
G(o*)=0 . (4.6)

However, this condition is not sufficient as other types of minima (stationary points) also

satisfy this condition. The second order condition follows from Eq. (4.2) and is [11,12]
(20)TH(0")(A0) > 0 (4.7)

which is sufficient to ensure that e(o* + Ao) > ¢(0*). If ¢(0) # 0, this implies that H(o")
is a positive definite matrix. Therefore the second-order sufficient condition for a strong

minimum is that H(o*) should be positive definite.

Returning to Eq. (4.3), hereafter termed the local model of the object function, we

initiate a search for o* by moving Ao. This involves an iterative procedure in that we

1T




start from some point o and choose in some fashion a direction Ao in which the minimum
s assumed to lie. This is repeated until the minimum is achieved (if possible). Because we
are ernploymg a quadratic version of ¢(o) then the local model of €(0) always allows us to
8nd a solution. However, the local model of (o) is certainly not a useful approximation
to €(o) itself except near a minimum. It is an act of faith that the local model and the
-actua.l model are “close” in the vicinity of the minimum. Simple calculations [16,17] show

that at a minimum

Ao = —[H(0)]'G(o) . (4.8)

This equation represents the appropriate direction Ao to take to the minimum o*, based
upon information at o. This equation is fundam/ental to all second-order minimization
algorithms (i.e., algorithms employing both G and H). However, on the actual objective
function surface, such as we are faced with, the local model of €(0) is only accurate in
the immediate vicinity of the minimum. This means that H may not be positive definite,
as required by Eq. (4.7), since it is évaluated at points other than the minimum. This
situation is most likely to occur at some distance from the minimum (i.e., for initial iter-
ations) since at a point close to the minimum all sufficiently differentiable functions tend
to behave as a quadratic function as their third and higher order derivatives in the Taylor
series become negligible. We will return to the necessity of keeping H positive definite

very shortly.

The classic approach to limiting step size durmg the iteration is a line search [16,17].
In line sea.rch tactics we compute a descent direction and subject this direction (which is
generally not toward the unconstrained minimum) to a minimization procedure of which
details can be found in the above references. Should the descent direction satisfy these
criteria, this iteration is then terminated. We then repeat the process, etc. The difficulty

of practical implementation is two-fold. First, such calculations are prohibitively expen-

sive and the minimization criteria are therefore only approximafe to save computer time;

| %




yet they must be made precise enough to ensure reasonably quick convergence. Second,
fulﬁlliﬁg these contrad—ictory goals is something of a black art and the programming effort
is very substantial, often occupying up to two-thirds of the coding for the entire optimiza-
tion. For small problems, such as the slit aperture, line search methods are very useful

and were employed along with regularized singular value decomposition in [18].

Although it is possible to use line search methodology for the 2-D aperture, we have
chosen to employ a relatively new method which offers man); advantages over the line search
methodology, the trust region tactic [16.7], but see also [18]. A particular advantage of the
trust region approach is in the very strong global convergence properties which hold with
no significant restrictions on the class of problems to which they apply making it esp:ecially |
useful for the nonlinear minimization of phase retrieval in two dimensions. In addition, the
trust region philosophy requires less computation than does the line search philosophy in
terms of gradient and Hessian, but more computations have to be performed on the local

model of the objective function.

Suppose we are at point olk), after the k-th iteration. Now let us assume that there

- is a region A(®), which we take to be in the shape of a sphere of radius h(¥)
A® = {o: Jo— o] < A¥) (49)

in which the local model of €(0), given by the Taylor series Eq. (4.2) agrees with the actual

objective function in some sense. One’s obvious choice is to let
o+ = ol¥ + A) . (4.10)

where the correction A(¥) minimizes the local model (A) for all values of oM + A in AR,

An iteration step in o is to be restricted by the region of validity of the Taylor series. Thus

we compute the gradient and Hessian, G and H, appropriate to o(¥) and minimize the

19




local modél of ¢(0) in order to determine the radius h(¥) of the trust region. In formal

language, we seek the solution of the problem
minimize (local model) subject to constraint Al £ R(E) (4.11)

Before we can solve this subproblem it is necessary to choose some reasonable criterion
on the radius A(® of the trust region. Obviously, the criterion should not present undue
restrictions, so that R(®) should be as large as possible subject to some agreed-upon idea
as to the degree of closeness of the local model of €(0) and ¢(0). One way is to define the
quality coefficient -

= (o + AR — ¢(ol¥))
k= eg(0® + A — ¢, (o)

(4.12)

whefe the denominator is the predicted reduction of the local model of €, now call it ¢,
while the numerator represents the reduction in the actual objective function. The closer
ri is to unity, the better the agreement between ¢ and €;. As a stopping criterion stop if
rr > .8 and go to the next iteration. If re < .8 reduce h(¥) and repeat the calculation.
The literature contains other stopping criteria but the one quoted above seems adequate

for our purposes. See the quoted references for more details.

Thus far we have outlined the general features of the inversion problem, estimating
o via minimization of an objective function ¢, as yet unspecified. We feel that there are
two 6bjective functions of possible interest. The first is the usual least squares (L; norm)

objective function

" ¢(o) = Z(L - Ii)z . | (4.13)

i=1

In this version of the problem, we consider the estimation of o via an (unconstrained)

nonlinear least squares minimization. A second objective function is for an L; norm

(o) = Y _|Ti— L) (4.14)

i=1




Consequently we have allowed considerable flexibility in the ¢ minimization algorithm so
as to accommodate both objective functions as well as others that may arise. For the

purposes of the present paper, we confine the discussion to the L, norm aspects.
Upon defining the vector

which is of length 7, we can rewrite Eq. (4.13) as

(o) = @T(o)@(o) : : (4.16)

The elements of G and H can be expressed directly in terms of the elements ® by

introducing an ancillary matrix J given by

d¢ 99
I=| : (417)
00~ 0¢~
_5_m01 . | —63?:
This matrix is generally rectangular. Thus
O¢i
5o =2 Z bim ¢ ‘ (4.18)
or
G=21Te . (4:19)
The corresponding elements of H are
O¢i 0¢i = B¢
60;;605 Z dox Oo¢ 2;'2:% do 60¢ . (4.20)
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with k,€ =1,2,...,7. The first term on the right-hand side is 2JTJ and we will call the

second term S; thus

H=2ITJ+S (4.21)

There is no guarantee that H will always be positive definite through the calculations;
in fact H will become almost singular as we approach the strong minimum. To avoid
this state of affairs, we consider a regularized version of H. In the regularized version,

we replace H by H + ¢I where g, the regularizing pa.ra.xﬁeter, is a small nonnegative real
number. This procedure can remove H from near singularity and for sufficient large ¢
restore the positive definite character of the Hessian. In linear problems, there is a well
established method to estimate ¢ [14]. In the nonlinear problem we employed ¢ in the
range 0.01 < ¢ < 0.05. There was not much difference in the ﬁn‘al answers as long as

g > 0; but setting ¢ = 0 caused considerable numerical instability as expected.




5. A NUMERICAL EXAMPLE

It is not our intention to present a catalog of numerical results at this time, yet we wish
to discuss the numerical workings of the algorithm in the presence of “measurement” noise.
To this end we considered a known object o(u,v) and from it calculated the diffraction
image I(u,v) from Eq. (2.3a) using the point-spread function a(u,v) corresponding to an
in-focus, aberration-free optical system as given by Eq. (2.6a). The measured diffraction

image I(u,v) was taken to be given by
I(u,v) = [1 4 6p(u, v)]Z(x,v) (5.1)

where § is a positive constant less than unity and p(tm,va) is a random variable uniformly

distributed over (—1,+1):

fw) =3 <1
0, >t (52)

Values of § used in the present calculations, such as § = 0.04 are described loosely as
4% a noise. Note that the noise we are introducing is intensity dependent noise; it is not
intended to faithfully simulate actual detector noise but rather to mimic such noise for the

~ purpose of testing the robustness of the inversion algorithm.

We have chosen the following lone ob ject, to illustrate the calculations:

o(u,v)=0, , -0 <v<-15
3
=§[3+erf(v)]a ~15<v<15 S (53)
A=0, -15<v< >

where erf(v) is the error function. There are two reasons for choosing this object. The

first reason is that the modulus of the object exhibits a spatial variation. One of the

13




(as yet unstated) requirements on the algorithm is that it be able to recover reasonably
accurate estimates of the object photometry in addition to estimating its size; as noted in
the introduction almost any of the currently available algorithms can perform this; very
few seem to be able to provide reasonably accurate estimates of photometry. The second
reason for choosing this object is that it is very small in width being slightly less than Airy

disk radius across (recall that an Airy disk radius ~ 3.82). These two constraints present

a severe test of the algorithm.

Calculations were run for the completely unrealistic case of the noise-free, measured
diffraction image of the object given by Eq. (5.3). The inversion algorithm was able to
return reasonable answers as compared to the true values. We will not quote any of these

results and go to the “noisy” measurement situation.

In Figure 2 we show a sample realization of the reconstruction in the presence of 2%
measurement noise. Note the presence of negative values of the modulus at the edges of
the object; however the photometry of the reconstruction follows the true object very well

except at the edges. Two sample realizations of the reconstruction of the modulus of the

object, in the presence of 4% measurement noise are shown in Figs. 3 and 4. Again note
the unphysical negative values of the modulus at the edges of the object. Considering
the fact that the object is so small, the modulus is in reasonable agreement with the true

object in spite of measurement noise.

The troublesome feature of the pfesent inw;'ersion algorithm is obviously the occurrence
of negative modulus values at the edges of the object. The edges are somewhat unrealistic
because they are of infinite slope and the algorithm tends to overshoot in the manner of a
Gist phenomenon. We could, of course, consider objects with finite slopes at the eciges
to minimize the overshoots and undershoots; instead we have decided to devélop a vari-
ant of the inversion algorithm using constrained minimization to surmount this annoying

problem. Details will be reported in the near future.
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Although we have run several dozen inversions, we do not possess a sufficiently large

base to estimate benchmark performance. However, many of our inversions, regardless
of the initial guess, took 150-180 iterates to converge. In a few cases, convergence was
achieved in half this number; nevertheless we also encountered some cases where conver-

gence required 200 iterations.

Generally the algorithm performance decomposed into two stages: (a) the initial stage
wherein the objective functions went through wild gyra.tior;s in magnitude as the trust re-
gion subalgorithm had to compute many new gradient and Hessian matrices while searching
for an appropriate direction of descent; (b) the second stage, when the trust region subal-
gorithm has lociced into a subset of “optimal” directions of descent, the objective function
then undergoes a monotone decrease to zero as the number of iterations is increased. We
again warn the reader that although convergence is attained, there is no guarantee that

the global minimum has been achieved.

As afinal remark, we note that as the analysis is heavily dependent upon linear algebra
(matrices, vectors); it would be of some interest to consider doing calculations via parallel

processing algorithms to speed up the computations even more.




6. SUMMARY

Given the rather discursive presentation, we feel it is useful to summarize the essentials
of our approach to the problem. We consider the problem of determining the modulus and
phase of the object at the lattice points as one of unconstrained minimization. A local
(i.e., quadratic) model approach is used. We are in the fortunate pésition of employing
both the Jacobian and Hessian, which, in the context of th‘e discretized diffraction model,
can be evaluated analytically! Thus we make use of both slope and curvature information,
other methods only use slope information. The relatively new, and powerful trust region
algorithm is then utilized in place of the usual line search algorithm. The trust region
algorithm makes full use of the local model and takes into account local validity; moreover

the algorithm exhibits global convergence properties.
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Fig. 1 Distribution of illuminence in the diffraction image of a coherently illuminated opaque
edge: o(v) = 0, v < 0 and o(v) = 1 for v > 0 viewed through an annular aperture
of obscuration radius € = 0.05. The solid line is for the in-focus situation, the dotted

line is for a half-wave of defocus. Taken from Reference 5.
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Fig. 2 Sample realization of reconstruction of modulus and phase of coherently illuminated
uminate

object (dashed lines) in the presence of 2% measurement “nojse”
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MODULUS

Fig. 3 Sample realization of reconstruction of modulus of coherently illuminated ob ject

(dashed line) in the presence of 4% measurement “noise”.




MODULUS

Fig. 4 Sample realization of reconstruction of modulus of coherently illuminated object

(dashed line) in the presence of 4% measurement “noise”.




REPORT OF INVENTIONS

 There were no inventions developed under the aegis

of this contract.




